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Abstract. This paper is devoted to the study of the relation between Osser-

man algebraic curvature tensors and algebraic curvature tensors which satisfy

the duality principle. We give a short overview of the duality principle in
Osserman manifolds and extend this notion to null vectors. Here, it is proved

that a Lorentzian totally Jacobi-dual curvature tensor is a real space form.

Also, we find out that a Clifford curvature tensor is Jacobi-dual. We provide
few examples of Osserman manifolds which are totally Jacobi-dual and an

example of an Osserman manifold which is not totally Jacobi-dual.

1. Introduction

Let (M, g) be a pseudo-Riemannian manifold of signature (ν, n − ν) assigned
with the Levi-Civita connection ∇. The curvature operator R of (M, g) is defined
by the equation R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ]. For a point p ∈M , on the tangent
vector space V = TpM , the equation R(X,Y, Z,W ) = g(R(X,Y )Z,W ) defines an

algebraic curvature tensor R ∈
⊗4 V∗, which satisfies the usual Z2-symmetries and

the first Bianchi identity.
Since V is equipped with an indefinite metric g of the signature (ν, n−ν) there

are various types of vectors depending on the norm εX = g(X,X). The vector
X ∈ V can be timelike (if εX < 0), spacelike (εX > 0), or null (εX = 0). We can
say that X ∈ V is nonnull (εX 6= 0) or unit (εX ∈ {−1, 1}).

The Jacobi operator JX : V → V is a natural operator associated to a curvature
operator by JX(Y ) = R(Y,X)(X). In the case of nonnull X ∈ V, JX preserves the
nondegenerate hyperplane {X}⊥ = {Y ∈ V : g(X,Y ) = 0}, and we have a reduced

Jacobi operator J̃X : {X}⊥ → {X}⊥, given as the restriction of JX .
We say that a curvature tensor R is Osserman if the characteristic polynomial

of JX is constant on both pseudospheres, S± = {X ∈ V | εX = ±1}. In a
pseudo-Riemannian setting, the Jordan normal form plays a crucial role, since
the characteristic polynomial does not determine the eigenstructure of a symmetric
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linear operator. We say that R is a Jordan Osserman curvature tensor if the Jordan
normal form of JX is constant on S±. A curvature tensor is Jacobi-diagonalizable
if its Jacobi operator JX is diagonalizable for all nonnull X.

In this article we put things in a purely algebraic setting, while relations with
the global differential geometry can be found in [13].

Our paper is organized as follows. In Section 1 we give some basic notions
and notations that we use throughout the paper. Section 2 is devoted to the
motivation for our investigations, which has been building from studying Osserman-
type problems in the last two decades. As a result of those investigations, in Section
3, we give the most general definition of the duality principle, and therefore we
slightly modify terminology to make it more precise. Sections 4 and 5 consist of
new results: in Section 4 we prove that only Lorentzian manifolds which satisfy the
totally Jacobi-dual condition are real space forms, and in Section 5 we show that
the Clifford curvature tensor is Jacobi-dual. Also, we find necessary conditions for
when a Clifford curvature tensor is totally Jacobi-dual. In this chapter we give
a few important examples of Clifford curvature tensors which are totally Jacobi-
dual. Section 6 deals with a certain Walker (2,2)-manifold whose curvature tensor
is Osserman, but it is not totally Jacobi-dual. At the end of this section we give a
short conclusion to our investigations.

2. Motivation

In the Riemannian setting, it is known that a local 2-point homogeneous space
has a constant characteristic polynomial on the unit sphere bundle. Osserman [19]
wondered if the converse held, and this question has been called the Osserman
conjecture. In the proofs of some particular cases of the conjecture, the implication
that

(2.1) JX(Y ) = λY =⇒ JY (X) = λX

appeared naturally, and it can significantly simplify some calculations. The first
results in this topic were given by Chi [9], who proved the conjecture in all dimen-
sions, except the cases of dimensions n = 4k for k > 1. In his work he used the
statement that (2.1) holds if λ is an extremal (minimum or maximum) eigenvalue
of the Jacobi operator.

The second author [20] used implication (2.1) to formulate the duality principle
for an Osserman curvature tensor (or Osserman manifolds) and he proved it in the
Riemannian setting. Moreover, the best results in this topic were given by Niko-
layevsky [15] [16] [17], who used the duality principle [16] to prove the Osserman
conjecture in all dimensions, except some possibilities in dimension n = 16.

It is interesting to investigate the connection between the Osserman condition
and the duality principle. The natural question is whether being Osserman and
satisfying the duality principle are equivalent properties for an algebraic curvature
tensor. Recently, affirmative answers to the above question in the Riemannian
setting were obtained in the following cases: in dimension n = 3 (see [1]), in
dimension n = 4 (see [8]), and later for any dimension (see [18]).
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The generalization of the Osserman conjecture has appeared in a pseudo-
Riemannian setting. For example, in the Lorentzian setting, an Osserman man-
ifold necessarily has a constant sectional curvature [5]. The investigation of the
Osserman curvature tensor of signature (2, 2) has become very popular, and it is
worth noting results from [6], which are based on the discussion of possible Jordan
normal forms of a Jacobi operator. Many authors have worked on this topic, and
a lot information about it could be found, for example, in monographs by Gilkey
[12], [13] and Garcia-Rio et al. [11].

The previous facts provide us good motivation to examine the duality principle
for Osserman manifolds in a pseudo-Riemannian setting and to examine the relation
between the duality principle and the Osserman condition of an algebraic curvature
tensor.

3. The duality principle extension

Since g(JY (X), X) = g(JX(Y ), Y ), the implication (2.1) in a pseudo-Riemannian
setting is inaccurate when X and Y belong to different unit pseudospheres. This
is why we corrected it with the following implication (see [4]):

(3.1) JX(Y ) = εXλY =⇒ JY (X) = εY λX.

If we deal with the converse problem, then it is important to examine an optimal
extension for our (X,Y ) domain, starting with the original (see [20]) where X and
Y are mutually orthogonal units. In the case in which R is Jacobi-diagonalizable
our domain can be equivalently extended to all X,Y ∈ V with εX 6= 0 (see [4]). The
diagonalizability of a Jacobi operator is a natural Riemannian-like condition (a Ja-
cobi operator, as a self-adjoint operator on a definite vector space, is diagonalizable
in the Riemannian setting); moreover, it is known that every Jordan Osserman cur-
vature tensor of nonneutral signature (n 6= 2ν) is necessarily Jacobi-diagonalizable
(see [14]).

Definition 3.1. We say that an algebraic curvature tensor R is Jacobi-dual
(or that it satisfies the duality principle) if (3.1) holds for all λ ∈ R and X,Y ∈ V
with εX 6= 0.

The concept with no restrictions on X and Y can be reformulated with the
following definition.

Definition 3.2. We say that an algebraic curvature tensor R is totally Jacobi-
dual if the equivalence

(Y belongs to an eigenspace of JX)⇐⇒ (X belongs to an eigenspace of JY )

holds for all X,Y ∈ V.

This definition is a natural generalization of the notion of a Jacobi-dual al-
gebraic curvature tensor. Due to the property g(JY (X), X) = g(JX(Y ), Y ) we
excluded λ from the definition, and we allowed that the null vector X can be an
eigenvector for JY with nonnull Y .
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4. Lorentzian totally Jacobi-dual curvature tensors

Since in the Riemannian case it was shown that the duality principle implies the
Osserman condition, the next natural step should be an investigation of the same
converse problem in the Lorentzian setting. We know that a Lorentzian Osser-
man curvature tensor has a constant sectional curvature, so we need the following
theorem.

Theorem 4.1. A Lorentzian totally Jacobi-dual curvature tensor is a real space
form.

Proof. Let T ∈ V be a unit timelike vector (εT = −1). In the Lorentzian
setting, V has the signature (1, n− 1); hence, T⊥ has the signature (0, n− 1), and

therefore the restriction J̃T = JT |T⊥ is diagonalizable as a self-adjoint operator on
a definite space. Let S1, . . . , Sn−1 be orthonormal (εSi

= −εT = 1) eigenvectors

of J̃T . Then JT (Si) = εTλiSi and Jacobi-duality gives JSi
(T ) = εSi

λiT for all
1 6 i 6 n− 1.

Let us define subspaces Ui (1 6 i 6 n− 1) of V by

Ui = Span{T, Si}, U⊥i = Span(
⋃
j 6=i

{Sj}),

and we shall show that subspaces Ui and U⊥i are invariant for each operator JX
where X ∈ Ui.

We need the following lemma, which is a consequence of straightforward cal-
culations (see [1]), so we omit its proof.

Lemma 4.1. If JX(Y ) = εXλY and JY (X) = εY λX hold with X ⊥ Y , then
JαX+βY (εY βX − εXαY ) = εαX+βY λ(εY βX − εXαY ) holds for all α, β ∈ R.

In the case of nonnull αT + βSi, vectors αT + βSi and βT + αSi create
an orthogonal basis for Ui. According to Lemma 4.1, JαT+βSi

(βT + αSi) =
εαT+βSiλi(βT + αSi), and with addition, JαT+βSi(αT + βSi) = 0, so we can
conclude that JX(Ui) ⊆ Ui holds for all nonnull X ∈ Ui. Since the Jacobi operator
is self-adjoint for all nonnull X ∈ Ui we have g(JX(U⊥i ),Ui) = g(U⊥i ,JX(Ui)) ⊆
g(U⊥i ,Ui) = {0}, and therefore JX(U⊥i ) ⊆ U⊥i holds. A direct calculation for
JαT+βSi

gives

(4.1) JαT+βSi = α2JT + β2JSi + αβK(T, Si),

where K(T, Si)(X) = R(X,T )Si + R(X,Si)T . If we choose α and β such that
αT + βSi is nonnull (α2 6= β2), then (4.1) implies that K(T, Si)(Ui) ⊆ Ui and
K(T, Si)(U⊥i ) ⊆ U⊥i . Let us get back to (4.1), and set α and β such that αT+βSi is
null (α2 = β2) to conclude that they have the same invariance. Thus, JX(Ui) ⊆ Ui
and JX(U⊥i ) ⊆ U⊥i hold for all X ∈ Ui.

The space U⊥i has the signature (0, n− 2), so the restriction JT±Si
|U⊥

i
is diag-

onalizable as a self-adjoint operator on a definite space. Since JNM = µM implies
JMN = νN , we have µεM = R(M,N,N,M) = νεN , and therefore for null N and
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nonnull M must be µ = 0 and thus JNM = 0. Since T ± Si is null and JT±Si
|U⊥

i

is diagonalizable we can conclude JT±Si
(U⊥i ) = {0} and therefore

(4.2) JT±Si(Sj) = 0

holds, for all 1 6 i 6= j 6 n− 1.
Then the relation JT+Si

(Sj) = 0 and total Jacobi-duality implies that T +Si is
an eigenvector of JSj

. Since T is an eigenvector of JSj
and g(T, T +Si) = −1 6= 0,

they have the same eigenvalue, and therefore Si is an eigenvector with the same
eigenvalue and R is a real space form.

Alternatively, we can express JT±Si
= JT + JSi

± K(T, Si) and get JT+Si
+

JT−Si
= 2(JT +JSi

). From (4.2) we have JT±Si
(Sj) = 0 and therefore JSi

(Sj) =
−JT (Sj) = −εTλjSj = εSi

λjSj . Finally

JSi(Sj) = εSiλjSj

holds for all 1 6 i 6= j 6 n − 1. Comparing this equation after (i, j)-symmetry
JSj

(Si) = εSj
λiSi and after the Jacobi-dual property JSj

(Si) = εSj
λjSi, we easily

conclude that λi = λj for 1 6 i 6= j 6 n − 1, which proves that R is a real space
form. �

5. Clifford curvature tensors and duality

Let us recall the very first example of an Osserman curvature tensor, a tensor
of constant sectional curvature 1, which has the expression

R0(X,Y )Z = g(Y,Z)X − g(X,Z)Y.

Any skew-adjoint endomorphism J on V with J2 = ±Id generates another basic
example of an Osserman curvature operator via

RJ(X,Y )Z = g(JX,Z)JY − g(JY, Z)JX + 2g(JX, Y )JZ.

The Clifford family of rank k is a set {J1, J2, . . . , Jk} of skew-adjoint endomorphisms
on V with the properties

(5.1) JiJj + JjJi = 2 εiδijId,

for εi ∈ {−1, 1} and 1 6 i, j 6 k.
If a curvature operator R can be represented as a linear combination of such

operators RJi (for Ji from the Clifford family, 1 6 i 6 k) including R0, then we say
that R (or assigned curvature tensor R) is Clifford (or has a Clifford structure).
Any Clifford curvature tensor is Osserman, and according to Nikolayevsky [15],
[16], any Riemannian Osserman curvature tensor with dimension n 6= 16 is Clifford.
Since Osserman and Clifford algebraic curvature tensors are closely related we shall
investigate Jacobi-dual and totally Jacobi-dual properties for Clifford curvature
tensors.

If a curvature operator R is Clifford then it can be written as

R = α0R0 +

k∑
i=1

αiRJi ,
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with αj ∈ R for 0 6 j 6 k. Skew-adjoint endomorphisms Ji have the property that
g(JiX,X) = 0, which simplifies our calculation of the Jacobi operator

JX(Y ) = R(Y,X)X = α0(g(X,X)Y − g(Y,X)X) +

k∑
i=1

3αig(JiY,X)JiX,

and therefore

(5.2) JX(Y ) = α0(εXY − g(Y,X)X)− 3

k∑
i=1

αig(Y, JiX)JiX.

Interchanging the roles of X and Y in the previous relation immediately gives

(5.3) JY (X) = α0(εYX − g(X,Y )Y )− 3

k∑
i=1

αig(X, JiY )JiY.

Let us suppose that Y belongs to an eigenspace of JX . Thus JX(Y ) = εXλY ,
and from (5.2) we have that

(5.4) εX(λ− α0)Y = −α0g(Y,X)X − 3
k∑
i=1

αig(Y, JiX)JiX.

The right-hand side of (5.4) belongs to the Span{X, J1X, . . . , JkX}. Using
(5.1) for i 6= j we have g(JiX, JjX) = 0, and thus the set {X, J1X, . . . , JkX} is
orthogonal.

Let us suppose that X is nonnull. Since

εJiX = g(JiX, JiX) = −g(X, JiJiX) = −g(X, εiX) = −εiεX ,

the vector JiX is nonnull. Moreover, for unit X we have unit JiX, so the set
{X, J1X, . . . , JkX} is orthonormal and, consequently, linearly independent.

Unless λ − α0 = 0, (5.4) allows us to express Y . In the case in which λ =
α0, the left-hand side of (5.4) is equal to zero, so the linearly independent set
{X, J1X, . . . , JkX} gives α0g(Y,X) = 0 and −αig(JiY,X) = αig(Y, JiX) = 0;
thus, by (5.3) we have JY (X) = εY α0X = εY λX, and therefore X belongs to an
eigenspace of JY .

Otherwise from (5.4) we have that

(5.5) Y =
−α0g(Y,X)

εX(λ− α0)
X − 3

k∑
i=1

αig(Y, JiX)

εX(λ− α0)
JiX,

and after a substitution in (5.3)

JY (X) = α0

εYX − g(X,Y )

−α0g(Y,X)

εX(λ− α0)
X − 3

k∑
j=1

αjg(Y, JjX)

εX(λ− α0)
JjX


− 3

k∑
i=1

αig(X, JiY )Ji

−α0g(Y,X)

εX(λ− α0)
X − 3

k∑
j=1

αjg(Y, JjX)

εX(λ− α0)
JjX

 .
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It gives

JY (X) = α0

(
εY +

α0(g(X,Y ))2

εX(λ− α0)

)
X

+
3α0g(X,Y )

εX(λ− α0)

k∑
i=1

αi (g(Y, JiX) + g(X, JiY )) JiX

+
9

εX(λ− α0)

k∑
i=1

k∑
j=1

αiαjg(X, JiY )g(Y, JjX)JiJjX.

Because g(X, JiY ) = −g(Y, JiX) the middle term on the right-hand side is can-

celled out. The last term contains
∑k
i,j=1 αiαjg(Y, JiX)g(Y, JjX)JiJjX, so we

split it into three sums (i < j, i > j, and i = j) and then use symmetries and (5.1)
to get that

k∑
i,j=1

αiαjg(Y, JiX)g(Y, JjX)JiJjX

=
∑

16i<j6k

αiαjg(Y, JiX)g(Y, JjX)(JiJj + JjJi)X +

k∑
i=1

α2
i (g(Y, JiX))2J2

i X

=

k∑
i=1

α2
i (g(Y, JiX))2εiX.

Finally, we have that

JY (X) =

(
α0εY +

α2
0(g(X,Y ))2

εX(λ− α0)
− 9

εX(λ− α0)

k∑
i=1

α2
i (g(Y, JiX))2εi

)
X

and thereforeX belongs to an eigenspace of JY , which proves the following theorem.

Theorem 5.1. A Clifford curvature tensor is Jacobi-dual.

To examine if a Clifford curvature tensor is totally Jacobi-dual we should check
the case in which εX = 0 in duality equation (3.1). Everything works fine for X = 0,
so let us start with null X 6= 0. If we suppose that Y belongs to an eigenspace of
JX , by (5.4) with εX = 0 we have that

(5.6) α0g(Y,X)X + 3
k∑
i=1

αig(Y, JiX)JiX = 0.

If the set {X, J1X, ..., JkX} is linearly independent, then we have α0g(Y,X) = 0
and αig(Y, JiX) = 0; thus, α0g(X,Y ) = 0 and αig(X,JiY ) = 0, so by (5.3) we
get JY (X) = εY α0X, just like in the case λ = α0. So, we proved the following
proposition.
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Proposition 5.2. Let R be a Clifford algebraic curvature tensor. If the set
{X,J1X, . . . , JkX} is linearly independent for any null vector X 6= 0, then R is
totally Jacobi-dual.

Remark 1. Let us notice that for 0 6= X a null vector, all vectors from
Span{X, J1X, . . . , JkX} are null because εJiX = −εiεX = 0. Since g(JiX,X) = 0
and g(JiX, JjX) = 0, for all i, j = 1, . . . , k, i 6= j, because of (5.2) we have
KerJX ⊇ Span{X, J1X, . . . , JkX} ⊇ ImJX . Then it follows that J 2

X = 0, that is
JX is two-step nilpotent.

Example 5.1 (Real space form). The curvature operator of a pseudo-Rie-
mannian manifold of constant sectional curvature c (real space form) is given by
R = cR0. By Theorem 5.1 it is Jacobi-dual, moreover, {X} is linearly independent
for any nonzero null X, so R is totally Jacobi-dual.

Example 5.2 (Complex space form). The curvature operator of a Kähler man-
ifold of constant holomorphic sectional curvature c (complex space form) is given by
R = (c/4)R0 − (c/4)RJ , where J is a skew-adjoint endomorphism with J2 = −Id.
Since 1 and −1 are not square roots of −1, they are not eigenvalues of J ; thus, X
and JX are linearly independent, and therefore R is totally Jacobi-dual.

Example 5.3 (Paracomplex space form). The curvature operator of a para-
Kähler manifold of constant paraholomorphic sectional curvature c (paracomplex
space form) is given by R = (c/4)R0+(c/4)RJ (see [10]), where J is a skew-adjoint
endomorphism with J2 = Id. It is possible here to have linearly dependent X and
JX. In this case JX = θX, and therefore our equation (5.6) (c/4)g(Y,X)X +
3(c/4)g(Y, JX)JX = 0 becomes (1 + 3θ2)(c/4)g(Y,X)X = 0. Because of X =
J2X = θ2X we have θ ∈ {−1, 1}, thus 1 + 3θ2 = 4 6= 0, and therefore g(Y,X) = 0.
Hence g(Y, JX) = θg(Y,X) = 0, so coefficients from (5.6) are zero, and finally (5.3)
implies that R is totally Jacobi-dual.

Example 5.4 (Quaternionic space form). The curvature operator of a quater-
nionic Kähler manifold of constant quaternionic sectional curvature c (quaternionic

space form) is given byR = (c/4)R0−(c/4)
∑3
i=1RJi , where {J1, J2, J3} is a canon-

ical local basis, which means skew-adjoint endomorphisms Ji with J2
i = −Id for all

1 6 i 6 3, where J1J2 = J3 holds.
Let us start with β0X + β1J1X + β2J2X + β3J3X = 0 to check the linear

independence of a set {X, J1X, J2X,J3X} for nonzero null X. We can act with J1,
J2, and J3 on our equation to get the following matrix equation:

β0 β1 β2 β3

−β1 β0 −β3 β2

−β2 β3 β0 −β1

−β3 −β2 β1 β0




X
J1X
J2X
J3X

 = 0.

A computation of the matrix determinant gives ∆ = (β2
0 + β2

1 + β2
2 + β2

3)2. It
is impossible to have βi 6= 0 for some i, because in that case ∆ > 0 and our
homogeneous matrix equation has a unique solution with X = 0. Hence βi = 0
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for all 0 6 i 6 3, and therefore {X,J1X, J2X, J3X} is linearly independent for all
nonzero X. Consequently R is totally Jacobi-dual.

6. A counterexample and conclusion

Let us consider the following example of a pseudo-Riemannian manifold (R4, g)
with metric given in [11]

g = x2x3dx1 ⊗ dx1 − x1x4dx2 ⊗ dx2 + dx1 ⊗ dx2 + dx2 ⊗ dx1

+ dx1 ⊗ dx3 + dx3 ⊗ dx1 + dx2 ⊗ dx4 + dx4 ⊗ dx2.

Metrics of this type are well-known Walker metric (for more details on Walker
metrics, see [7]). Since the characteristic and minimal polynomials of JX (for a unit
vector X) are λ4 and λ3, it is a globally Jordan Osserman manifold. A straightfor-
ward calculation for this manifold gives that

J ∂
∂x3

(
∂

∂x1
) = 0 and J ∂

∂x1

(
∂

∂x3
) = −1

2

∂

∂x4
.

If we substitute X = ∂
∂x3

and Y = ∂
∂x1

, then we can see that Y is an eigenvector of

JX (for the eigenvalue 0), but the null vector X is not an eigenvector of JY . Con-
sequently, our pseudo-Riemannian manifold (R4, g) is Osserman but is not totally
Jacobi-dual.

Conclusions. In this paper we study the relation between Osserman algebraic
curvature tensors and Jacobi-dual algebraic curvature tensors. Every known exam-
ple of an Osserman curvature tensor is Jacobi-dual; however, we failed to prove it in
general. In our previous work, we gave affirmative answers only for the conditions
of small index (ν 6 1), low dimension (n 6 4), or some specific examples with small
numbers of eigenvalues of a reduced Jacobi operator.

The Riemannian case works after the original proof [20] and our extensions in
[4] and [2]. The Lorentzian Osserman curvature tensor has a constant sectional
curvature (see [5]), so it is totally Jacobi-dual (Example 5.1). In the dimension
n = 4 the problem is solved in [2], and some results have been given for the case
when a reduced Jacobi operator has exactly two eigenvalues (see [3]). Let us recount
our main result from [4]: a Jacobi-diagonalizable Osserman curvature tensor such
that JX has no null eigenvectors for all nonnull X is Jacobi-dual.

According to our counterexample (Osserman but not totally Jacobi-dual), the
main converse question should be whether being Jacobi-dual necessarily implies
being Osserman. In [1] this is proved for dimension n = 3 (any signature). In
Riemannian settings this equivalence is proved in dimension 4 in [8], and is given
an affirmative answer for any dimension in [18]. Also the authors announced the
extension to any Jacobi-diagonalizable case.
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[3] V.Andrejić, Duality principle for Osserman manifolds (in Serbian), doctoral thesis, Bel-
grade, 2010.
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